2-dimensional arithmetic residue check codes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Residue Codes for Robust Public-Key Arithmetic

We present a scheme for robust multi-precision arithmetic over the positive integers, protected by a novel family of non-linear arithmetic residue codes. These codes have a very high probability of detecting arbitrary errors of any weight. Our scheme lends itself well for straightforward implementation of standard modular multiplication techniques, i.e. Montgomery or Barrett Multiplication, sec...

متن کامل

Robust Residue Codes for Fault-Tolerant Public-Key Arithmetic

We present a scheme for robust multi-precision arithmetic over the positive integers, protected by a novel family of non-linear arithmetic residue codes. These codes have a very high probability of detecting arbitrary errors of any weight. Our scheme lends itself well for straightforward implementation of standard modular multiplication techniques, i.e. Montgomery or Barrett Multiplication, sec...

متن کامل

FIR parity check codes

This paper describes a method for packet synchronization and error detection for use in a synchronous digital communications system. The method relies upon a class of linear block codes that have parity checks that are expressed in terms of a finite-impulse response (FIR) filter. This system is incorporated in the newly established ITU standard of digital cable television standard, J.83 appendi...

متن کامل

Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are LDPC codes with linear rate and distance n. Their rate is evaluated via Euler characteristic arguments and their distance using Z2-systolic geometry. This construction answers a queston of Zémor [Z], who asked whether homological codes with such parameters could exist ...

متن کامل

Parallel Montgomery Multiplication in GF (2) using Trinomial Residue Arithmetic

We propose the first general multiplication algorithm in GF (2k) with a subquadratic area complexity of O(k8/5) = O(k1.6). We represent the elements of GF (2k) according to 2n pairwise prime trinomials, T1, . . . , T2n, of degree d, such that nd ≥ k. Our algorithm is based on Montgomery’s multiplication applied to the ring formed by the direct product of the n first trinomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1987

ISSN: 0898-1221

DOI: 10.1016/0898-1221(87)90082-4